Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification

Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a...

متن کامل

Convergent Projective Non-negative Matrix Factorization

In order to solve the problem of algorithm convergence in projective non-negative matrix factorization (P-NMF), a method, called convergent projective non-negative matrix factorization (CP-NMF), is proposed. In CP-NMF, an objective function of Frobenius norm is defined. The Taylor series expansion and the Newton iteration formula of solving root are used. An iterative algorithm for basis matrix...

متن کامل

Discriminant Projective Non-Negative Matrix Factorization

Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF ...

متن کامل

Topic supervised non-negative matrix factorization

Topic models have been extensively used to organize and interpret the contents of large, unstructured corpora of text documents. Although topic models often perform well on traditional training vs. test set evaluations, it is often the case that the results of a topic model do not align with human interpretation. This interpretability fallacy is largely due to the unsupervised nature of topic m...

متن کامل

Supervised non-negative matrix factorization for audio source separation

Source separation is a widely studied problems in signal processing. Despite the permanent progress reported in the literature it is still considered a significant challenge. This chapter first reviews the use of non-negative matrix factorization (NMF) algorithms for solving source separation problems, and proposes a new way for the supervised training in NMF. Matrix factorization methods have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2015

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0138814